27 research outputs found

    Modeling social norms in real-world agent-based simulations

    Get PDF
    Studying and simulating social systems including human groups and societies can be a complex problem. In order to build a model that simulates humans\u27 actions, it is necessary to consider the major factors that affect human behavior. Norms are one of these factors: social norms are the customary rules that govern behavior in groups and societies. Norms are everywhere around us, from the way people handshake or bow to the clothes they wear. They play a large role in determining our behaviors. Studies on norms are much older than the age of computer science, since normative studies have been a classic topic in sociology, psychology, philosophy and law. Various theories have been put forth about the functioning of social norms. Although an extensive amount of research on norms has been performed during the recent years, there remains a significant gap between current models and models that can explain real-world normative behaviors. Most of the existing work on norms focuses on abstract applications, and very few realistic normative simulations of human societies can be found. The contributions of this dissertation include the following: 1) a new hybrid technique based on agent-based modeling and Markov Chain Monte Carlo is introduced. This method is used to prepare a smoking case study for applying normative models. 2) This hybrid technique is described using category theory, which is a mathematical theory focusing on relations rather than objects. 3) The relationship between norm emergence in social networks and the theory of tipping points is studied. 4) A new lightweight normative architecture for studying smoking cessation trends is introduced. This architecture is then extended to a more general normative framework that can be used to model real-world normative behaviors. The final normative architecture considers cognitive and social aspects of norm formation in human societies. Normative architectures based on only one of these two aspects exist in the literature, but a normative architecture that effectively includes both of these two is missing

    Comparing Methods of Targeting Obesity Interventions in Populations: An Agent-based Simulation

    Get PDF
    Social networks as well as neighborhood environments have been shown to effect obesity-related behaviors including energy intake and physical activity. Accordingly, harnessing social networks to improve targeting of obesity interventions may be promising to the extent this leads to social multiplier effects and wider diffusion of intervention impact on populations. However, the literature evaluating network-based interventions has been inconsistent. Computational methods like agent-based models (ABM) provide researchers with tools to experiment in a simulated environment. We develop an ABM to compare conventional targeting methods (random selection, based on individual obesity risk, and vulnerable areas) with network-based targeting methods. We adapt a previously published and validated model of network diffusion of obesity-related behavior. We then build social networks among agents using a more realistic approach. We calibrate our model first against national-level data. Our results show that network-based targeting may lead to greater population impact. We also present a new targeting method that outperforms other methods in terms of intervention effectiveness at the population level

    Extracting Agent-Based Models of Human Transportation Patterns

    Full text link
    Due to their cheap development costs and ease of deployment, surveys and questionnaires are useful tools for gathering information about the activity patterns of a large group and can serve as a valuable supplement to tracking studies done with mobile devices. However in raw form, general survey data is not necessarily useful for answering predictive questions about the behavior of a large social system. In this paper, we describe a method for generating agent activity profiles from survey data for an agent-based model (ABM) of transportation patterns of 47,000 students on a university campus. We compare the performance of our agent-based model against a Markov Chain Monte Carlo (MCMC) simulation based directly on the distributions fitted from the survey data. A comparison of our simulation results against an independently collected dataset reveals that our ABM can be used to accurately forecast parking behavior over the semester and is significantly more accurate than the MCMC estimator. © 2012 IEEE

    Multi-modal Predictive Models of Diabetes Progression

    Full text link
    With the increasing availability of wearable devices, continuous monitoring of individuals' physiological and behavioral patterns has become significantly more accessible. Access to these continuous patterns about individuals' statuses offers an unprecedented opportunity for studying complex diseases and health conditions such as type 2 diabetes (T2D). T2D is a widely common chronic disease that its roots and progression patterns are not fully understood. Predicting the progression of T2D can inform timely and more effective interventions to prevent or manage the disease. In this study, we have used a dataset related to 63 patients with T2D that includes the data from two different types of wearable devices worn by the patients: continuous glucose monitoring (CGM) devices and activity trackers (ActiGraphs). Using this dataset, we created a model for predicting the levels of four major biomarkers related to T2D after a one-year period. We developed a wide and deep neural network and used the data from the demographic information, lab tests, and wearable sensors to create the model. The deep part of our method was developed based on the long short-term memory (LSTM) structure to process the time-series dataset collected by the wearables. In predicting the patterns of the four biomarkers, we have obtained a root mean square error of 1.67% for HBA1c, 6.22 mg/dl for HDL cholesterol, 10.46 mg/dl for LDL cholesterol, and 18.38 mg/dl for Triglyceride. Compared to existing models for studying T2D, our model offers a more comprehensive tool for combining a large variety of factors that contribute to the disease

    Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.publishedVersio

    Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12.2 million (95% UI 11.0-13.6) incident cases of stroke, 101 million (93.2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6.55 million (6.00-7.02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11.6% 10.8-12.2] of total deaths) and the third-leading cause of death and disability combined (5.7% 5.1-6.2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70.0% (67.0-73.0), prevalent strokes increased by 85.0% (83.0-88.0), deaths from stroke increased by 43.0% (31.0-55.0), and DALYs due to stroke increased by 32.0% (22.0-42.0). During the same period, age-standardised rates of stroke incidence decreased by 17.0% (15.0-18.0), mortality decreased by 36.0% (31.0-42.0), prevalence decreased by 6.0% (5.0-7.0), and DALYs decreased by 36.0% (31.0-42.0). However, among people younger than 70 years, prevalence rates increased by 22.0% (21.0-24.0) and incidence rates increased by 15.0% (12.0-18.0). In 2019, the age-standardised stroke-related mortality rate was 3.6 (3.5-3.8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3.7 (3.5-3.9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62.4% of all incident strokes in 2019 (7.63 million 6.57-8.96]), while intracerebral haemorrhage constituted 27.9% (3.41 million 2.97-3.91]) and subarachnoid haemorrhage constituted 9.7% (1.18 million 1.01-1.39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79.6 million 67.7-90.8] DALYs or 55.5% 48.2-62.0] of total stroke DALYs), high body-mass index (34.9 million 22.3-48.6] DALYs or 24.3% 15.7-33.2]), high fasting plasma glucose (28.9 million 19.8-41.5] DALYs or 20.2% 13.8-29.1]), ambient particulate matter pollution (28.7 million 23.4-33.4] DALYs or 20.1% 16.6-23.0]), and smoking (25.3 million 22.6-28.2] DALYs or 17.6% 16.4-19.0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries

    Normative Agents For Real-World Scenarios

    No full text
    Norms are an important part of human social systems, governing many aspects of group decision-making. Yet many popularly used social models neglect to model normative effects on human behavior, relying on simple probabilistic and majority voting models of influence diffusion. Within the multi-agent research community, the study of norm emergence, compliance, and adoption has resulted in new architectures and standards for normative agents; however few of these models have been successfully applied to real-world public policy problems. During our research we introduced a new hybrid architecture, Cognitive Social Learners (CSL), that models bottom-up norm emergence through a social learning mechanism, while using BDI (Belief/Desire/Intention) reasoning to handle adoption and compliance. Our proposed cognitive architecture includes the interaction between rational thought, reward-based learning, and contagious social behaviors. The future plan is to employ this architecture for constructing normative agents to model human social systems; the aim of our research is to be able to study the effects of different public policy decisions on a community and studying the emergence of norms in real-world cases

    Modeling Implicit Collaboration With Normative Agent Architectures

    No full text
    Although there are many explicit collaboration mechanisms in which human teams commit to a joint project, a high level of implicit coordination can be achieved in human societies through the propagation of social norms. A norm can be defined as a \u27a behavioral rule that is considered valid by the majority of the population\u27 [1]. Norms play a significant role in determining the behavior of people in human societies, and have been successfully used to achieve coordination within normative multi-agent systems
    corecore